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Abstract

Land-atmosphere feedback, by which (for example) precipitation-induced

moisture anomalies at the land surface affect the overlying atmosphere and

thereby the subsequent generation of precipitation, has been examined and

quantified with many atmospheric general circulation models (AGCMs). Gen-

erally missing from such studies, however, is an indication of the extent to

which the simulated feedback strength is model dependent. Four modeling

groups have recently performed a highly controlled numerical experiment

that allows an objective inter-model comparison of land-atmosphere feedback

strength. The experiment essentially consists of an ensemble of simulations

in which each member simulation artificially maintains the same timeseries

of surface prognostic variables. Differences in atmospheric behavior between

the ensemble members then indicates the degree to which the state of the

land surface controls atmospheric processes in that model. A comparison

of the four sets of experimental results shows that feedback strength does

indeed vary significantly between the AGCMs.



1 Introduction

The impact of precipitation anomalies on soil moisture anomalies is self-

evident - hea_7 rains induce wet soil, whereas extended dry periods induce

dry soil. Less obvious is the impact of soil moisture anomalies on the pre-

cipitation itself. Conceivably, a wetter soil can produce higher evaporation,

which in turn can induce additional precipitation through both local recy-

cling and modifications in the large-scale circulation. This land-atmosphere

feedback, if strong, is of great interest. It may allow, for example, the trans-

lation of soil moisture anomalies into short-term and seasonal predictions of

precipitation. It also helps determine the climatic impacts of land-use change

(e.g., deforestation).

Atmospheric general circulation models (AGCMs) are popular tools for

examining land-atmosphere feedback, largely because they include param-

eterizations for many of the physical processes involved and because these

parameterizations can be manipulated easily in controlled experiments. The

list of published feedback studies is extensive [e.g., Shukla and Mintz, 1982;

Henderson-Sellers and Gornitz, 1984; Delworth and Manabe, 1989; Oglesby

and Erickson, 1989; Dirmeyer, 1994; and Lau and Bua, 1998; to name only

a few]. Necessarily missing from single-AGCM experiments, however, is an

analysis of the degree to which the experimental results are model-dependent.

Models can certainly differ in their simulation of feedback; differences in land-

surface parameterizations, for example, can lead to differences in the response



of evaporationto precipitation anomalies,and differencesin boundary layer

and convectionparameterizationscan leadto differencesin the atmosphere's

responseto surfaceevaporationand sensibleheat flux. Clearly, in any feed-

back study, an evaluation of simulated feedback strength against observations

is desirable.

Unfortunately, while a few indirect approaches have been employed at

the regional scale [e.g., FindeU and Eltahir, 1997], the direct quantification

of real-wor_ld feedback strength at the global scale from available observations

is extremely difficult, if not impossible. The validation of simulated feedback

strength is indeed beyond the scope of this paper. This paper instead focuses

on a lesser, but still very important, aspect of the problem: the extent to

which simulated feedback strength varies between different AGCMs. This

variation is a measure of the degree to which feedback-related model results

are model dependent. In a sense, it measures the uncertainty inherent in our

understanding of feedback and our ability to model it.

The problem of intermodel variation in feedback strength is addressed

here by having several AGCMs perform the same, highly controlled nu-

merical experiment. Four models participated in the intercomparison: the

NASA Seasonal-to-Interannual Prediction Project (NSIPP) AGCM, the Cen-

ter for Ocean-Land-Atmosphere Studies (COLA) AGCM, the National Cen-

ter for Atmospheric Research Community Climate Model Version 3 cou-

pled to the Biosphere-Atmosphere Transfer Scheme (CCM3/BATS), and the



United Kingdom MeteorologicalOfficeAGCM (HadAM3). The experiment

is describedin section2, andthe resultsof the intercomparisonarepresented

in section3. Section4 offerssomeinterpretation of the results.

2 Experiment Design

The design of the experiment is illustrated in Figure 1. The experiment has

two parts. In the first part, the AGCM, fully coupled to its own land surface

model (LSM) but forced by prescribed sea surface temperatures (SSTs), is

run over a selected month. At each time step in this simulation (hereafter

labeled simulation W, for "write"), the values of all land surface prognos-

tic variables at every grid cell are recorded into a special data file. The

recorded prognostic variables include soil moisture contents at all vertical

levels, temperatures at all vertical levels, canopy interception reservoir con-

tent, and various variables characterizing snow, if snow is present. The one-

month experiment is then repeated 15 more times, using 15 different sets

of atmospheric and land surface initial conditions, to obtain an ensemble of

16 one-month simulations (simulations W2-W16). The prognostic variables,

however, are only recorded during Simulation W1.

The second part of the experiment consists of another 16-member ensem-

ble of one-month simulations, using solar forcing for the same month as before

and using the same prescribed SSTs. Again, the ensemble members use dif-

ferent atmospheric initial conditions. At every time step of every simulation,
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the updated valuesof all land surfaceprognosticvariablesarediscardedand

then replacedby the correspondingvaluesfor that time step from the data

file written in Simulation W1. Thus, in this ensemble,all member simula-

tions (simulationsR1-R16,whereR denotes"read") are forced to maintain

preciselythe sametime seriesof (geographically-varying)land surfacestates.

We focus ma!nly on precipitation in this study. The idea is simple: we

examine the degreeto which the time seriesof precipitation rates in simu-

lations R1-R16are similar. If they are similar, evenafter "subtracting out"

the effectsof SSTsand other intramonthly signals through an analysis of

simnlati_)nsW1-W16, then we cansaythat the evolution of the atmosphere

is indeedlargely governedby land surfaceconditions. The degreeto which

the intra-ensemblesimilarity differsbetweenGCMs providesonemeasureof

how land-atmospherefeedbackstrength variesbetweenmodels.

The set-upof the experimentdid differ slightly betweenthe four partic-

ipating GCMs. For example, for various reasons,eachGCM usedits own

set of prescribedSSTs,though eachwasderived from datasetsusedin vari-

ousphasesof the AtmosphericModel IntercomparisonProject [Gates,1992].

Thesedifferences,which shouldnot affect the basic outcomeof the experi-

ment, are outlined in Table 1.



3 Results

To quantify the degree of "similarity" in the time series of precipitation

amongst the members of an ensemble, we employ an approach used by Koster

et al. [2000]. First, we choose an aggregation period. In the analysis below,

we look at 3-day totals of precipitation, P; each July simulation thus provides

a times series of ten 3-day totals. We then compute an ensemble average

time-series,/5. For each time period n, we compute

1 16

Pn = 1---6_ P,_i, (1)
i----1

where i loops over the 16 ensemble members. Next, we compute the variance,

cry, of P across all ensemble members and time periods (i.e., across 160

values) and the variance, o-3, of/5 across all time periods (i.e., across 10

values). This allows us to compute f_p, a measure of time series similarity:

a,, - - 4
15@ (2)

Note that if each ensemble member produces exactly the same time series of

2 will equal @, and _p will equal 1. If, however, the time series areP, then O-p

2 will be approximately a_/16, and _p willcompletely uncorrelated, then ap

be about 0. Thus, Ftp varies from 0 to 1, with values closer to 1 indicating a

greater degree of precipitation similarity.

_p essentially measures the ratio of the signal variance to the total vari-

ance. (A similar diagnostic was suggested by Rowell et al. [1995]). Figure



2 illustrates the nature of _'_p graphically. The top plot in the figure shows

the time series of precipitation at a specific grid cell for each of the 16 sim-

ulations in the NSIPP R ensemble. Note that the precipitation is low for

the month until day 20, when it shoots up for each simulation. The obvious

coherence between the different time series is reflected in the high __p value

(0.85) at this grid cell. In the bottom plot, which shows the 16 time series

at a different grid cell, the coherence is absent - the precipitation generated

in one simulation is essentially independent of that in any other simulation.

Precipitation at this cell is thus controlled by chaotic atmospheric dynamics

rather than by SST or land conditions. _'-_p for this grid cell is very low (0.07).

To relate _-_p to land control, we must properly account for seasonal vari-

ations in SSTs and anything else outside of the land surface that can induce

intra-monthly trends in precipitation. W_e do this simply by calculating _p

separately for the R and W ensembles. _p(R) represents the similarity in

precipitation induced by all factors, including the specified set of land states.

_p (W) represents the similarity induced by everything but the specified land

states. The difference _'_p(R) -- __p(W) thus gives a first-order indication of

the land's impact on the evolution of the atmosphere.

Global maps of _p(R) - _p(W) are provided in Figure 3 for all four

AGCMs. The salient result is a wide disparity in the diagnostic between the

models. The impact of land conditions on atmospheric processes is clearly

largest for the NSIPP model. The COLA and CCM3/BATS models have



similar _p(R) -- tip(W) distributions, with values of 0.2 or less almost ev-

erywhere, and the HadAM3 model has what appears to be an even weaker

land-atmosphere connection.

Because the choice of a 3-day averaging period was somewhat arbitrary,

other averaging periods were examined as well. The relative behavior of the

models is similar when the precipitation is averaged over 1-day and 6-day

periods (not shown). In general, however, _p(R)- _p(W) for a given model

increases as the precipitation aggregation period increases..

4 Discussion

4.1 Coherence of Surface Fluxes

One potential explanation for low values of _p(R) -- _'_p(W) in Figure 3 in-

volves the response of the surface turbulent fluxes to the imposed surface

states. Due to variations in the atmospheric forcing, the time series of evap-

oration or sensible heat flux amongst the members of an ensemble may not

look the same, even given identical time series of soil moisture and temper-

ature. If the time series of turbulent fluxes were not the same, and if the

effect of the land surface on precipitation were mostly through these fluxes,

then the derived values of _p(R) - Ftp(W) would necessarily be low.

A warning is in order here the response of precipitation to land surface

conditions may be more complex than this. For example, the temperature

and humidity conditions in the atmospheric boundary layer, which help de-
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termine precipitation, may be strongly guided by surface temperature and

moisture states. Although the surfacefluxes are responsiblefor communi-

cating the surfacestates to the boundary layer, the state of the boundary

layer may nevertheless correlate better with the surface states themselves

than with the time-integrated surface fluxes examined in this section.

With this caveat, we analyze the time series of evaporation rates produced

by the GCMs by defining, in direct analogy to gtp, the diagnostic fiE:

15a_ (3)

2
where a 2 is the variance of evaporation across all ensemble members and ak

is the variance of evaporation in the ensemble mean time series, f_E thus

measures the degree of similarity among the time series of evaporation rates

(and loosely, via energy balance considerations, among the time series of

sensible heat fluxes) produced by the different members of an ensemble. As

with _p, a value of 1 implies that all 16 time series are identical, whereas a

value of zero implies that the 16 time series are completely uncorrelated.

Figure 4 shows the global distribution of _E(R) --_E(W) for each of the

AGCMs. In each case, DE is high over much of the globe. Indeed, in many

regions, specifying surface moisture and temperature states in this experi-

ment is roughly equivalent to specifying time series of the surface turbulent

fluxes. If f_p is correspondingly low in these regions, as it is in particular for

the COLA, CCM3/BATS, or HadAM3 GCMs, then we can conclude that

the modeled atmosphere in these regions does not respond strongly to the
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local surfacefluxes. That is, a low _'_p value in the presence of a high _E

value is probably best explained by the model's atmospheric formulations,

presumably those of boundaD _ layer processes and moist convection, though

it might also (or instead) result from a low _E value in a critical remote

region.

In some regions, t2E is indeed fairly low. Both the CCM3/BATS and

the HadAM3 models, for example, show low values over a large fraction

of northeastern Asia, and the HadAM3 model also shows low values over

much of North America. Such findings for HadAM3 are consistent with

Gedney et al.'s [2000] suggestion that evaporation in the HadAM3 model

is rarely moisture limited. If the land surface's effect on precipitation is

mostly through the surface fluxes, and if this effect is mostly local, then

Figure 4 does identify some regions for which the land-atmosphere coupling

is weakened by an insensitivity of surface moisture and energy fluxes to the

surface prognostic states.

4.2 Idealized Nature of Experiment

One curious aspect of Figure 3 is the geographical structure of the NSIPP

model's fir distribution, which differs somewhat from the distribution of sea-

sonal _p values derived by Koster et al. [2000] with the same AGCM. Koster

et al. [2000] place the largest fir values in the transition zones between arid

and humid regions, whereas Figure 3 places them in somewhat different ar-

eas, farther to the north, for example, in North America. The difference
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presumablyresults from the different designsof the experiments. Koster et

al. [2000] effectively prescribe only land surface soil moisture contents. This

has direct relevance to predictability studies, since soil moistures may be

predictable (and thus effectively "specified") on seasonal timescales due to

their inherent memory. The present experiment prescribes diurnal variations

of both surface moisture conditions and surface temperatures. Apparently

the added specification of temperature leads to a significant increase in _p

in certain areas.

This last point underscores the idealized nature of the present experiment.

The experiment does not address the long-term predictability of precipitation

in the participating models. It simply allows a highly controlled comparison

of the models' coupling behavior - a comparison of the degree to which the

generation of precipitation is guided by the full land surface state rather

than by chaotic atmospheric dynamics or external forcings (SSTs). Clearly

the models disagree about the strength of land-atmosphere coupling. This

uncertainty is often not acknowledged in land-atmosphere feedback studies.

We must emphasize again that the proper level of land-atmosphere feed-

back -- the proper range of f_p (or even f_E) -- is simply not known. This

analysis makes no attempt to state which model's coupling behavior is the

most realistic. For a proper evaluation, long-term observational studies of

boundary layer behavior are required. Furthermore, the low f_p values in

Figure 3 for the COLA, CCM3/BATS, and HadAM3 models do not imply
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that thesemodelshavea low potential for predictability. The COLA group

recently performed a seriesof experimentssimilar to thoseof Koster et al.

[2000]. An analysis of these experiments shows that the coupling behavior

of the COLA model on seasonal timescales is similar to that of the NSIPP

model -- in effect, _p for both models is high over a significant fraction of

the earth. Apparently the noise behind the COLA model's low _-_p values in

Figure 3 is smoothed out at much longer timescales.

5 Summary

A highly-idealized, simple, and inexpensive AGCM experiment has been de-

vised that illustrates some key aspects of simulated land-atmosphere coupling

behavior. Four AGCM groups have performed the experiment for the present

study, and'a comparison of their results shows that the apparent strength

of land-atmosphere coupling on short (daily to weekly) timescales does vary

significantly between the models. A strict evaluation against observations

is not provided, since the strength of coupling in the real world is difficult,

if not impossible, to measure. Nevertheless, the intermodel differences are

important in themselves, since they illustrate the uncertainty with which we

understand the various processes (particularly atmospheric boundary layer

and convection processes) that control the coupling. Further studies of cou-

pling strength are needed, particularly with field observations, given the cen-

tral role played by land-atmopshere feedback in many published and ongoing

12



numerical studiesof climate variability and predictability.

Acknowledgments. The NSIPP model runs were funded the Earth Science

Enterprise of NASA Headquarters through the EOS-Interdisciplinary Sci-

ence Program and the NASA Seasonal-to-Interannual Prediction Project

(NSIPP), with computational resources provided by the NASA Center for

Computational Sciences. The UKMET effort was supported by the UK

DETR Climate Prediction Programme (Contract PECD 7/12/37). The

COLA model runs were funded by NSF grant ATM 9814265, NOAA grant

NA96GP0056 and NASA grant NAG5-8202. The CCM3/BATS runs were

supported by DOE CCPP grant number PEFG-0398-ER-6206 and NOAA

PACS.

13



References

Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and

J. Smith, 1999: The impact of new land surface physics on the GCM

simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203.

Delworth, T.L., and S. Manabe, 1989: The influence of soil wetness on near-

surface atmospheric variability. J. Clim., 2, 1447-1462.

DeWitt, D. G., 1996: The effect of the cumulus convection on the climate

of the COLA general circulation model. COLA Technical Report 27

[Available from the Center for Ocean-Land-Atmosphere Studies, 4041

Powder Mill Road, Suite 302, Calverton, MD 20705 USA], 58 pp.

Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-

Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR

Community Model. NCAR Tech. Note NCAR/TN-387÷STR, National

Center for Atmospheric Research, Boulder, CO, 72 pp.

Dirmeyer, P.A., 1994: Vegetation stress as a feedback mechanism in midlat-

itude drought. J. Clim., 7, 1463-1483.

Dirmeyer, P. A., and F. J. Zeng. 1999: An update to the distribution and

treatment of vegetation and soil properties in SSiB. COLA Technical Re-

port "/8 [Available from the Center for Ocean-Land-Atmosphere Studies,

4041 Powder Mill Road, Suite 302, Calverton, MD 20705 USA], 25 pp.

Dirmeyer, P. A., 2001: An evaluation of the strength of land-atmosphere

14



coupling. J. Hydrometeor. (in press).

Findell, K. L., and E. A. B. Eltahir, 1997: An analysis of the soil moisture-

rainfall feedback, based on direct observations from Illinois. Water Re-

sour. Res., 33, 725-735.

Gates, W.L., 1992: AMIP, the atmospheric model intercomparison project.

Bull. Am. Met. Soc., 73, 1962-1970.

Gedney, N., P.M. Cox, H. Douville, J. Polcher, and P.J. Valdes, 2000: Char-

acterizing GCM land-surface schemes to understand their responses to

climate change. J. Clim., 13, 3066-3079.

Gregory, D. and P. R. Rowntree, 1990: A mass-flux convection scheme with

representation of cloud ensemble characteristics and stability dependent

closure. Mon. Wea. Rev., 118, 1483-1506.

Hahmann, A. N., and R. E. Dickinson, 2001: A fine-mesh land approach

for general circulation models and its impact on regional climate. J.

Climate, 14, 1634-1646.

Henderson-Sellers, A. and V. Gornitz, 1984: Possible climatic impacts of

land cover transformations, with particular emphasis on tropical defor-

estation. Climatic Change, 6, 231-258.

Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, D. L. Williamson,

and P. J. Rasch, 1998: The National Center for Atmospheric Research

Community Climate Model: CCM3. J. Climate, 11, 1131-1149.

15



Kinter, J. L., D. DeWitt, P. A. Dirmeyer, M. J. Fennessy,B. P. Kirtman,

L. Marx, E. K. Schneider, J. Shukla, and D. M. Straus, 1997: The

COLA atmosphere-biospheregeneralcirculation model. Volume 1: For-

mulation. COLA Technical Report 51 [Available from the Center for

Ocean-Land-Atmosphere Studies, 4041 Powder Mill Road, Suite 302,

Calverton, MD 20705 USA], 46 pp.

Koster, R. D. and M. J. Suarez, 1992: Modeling the land surface boundary

in climate models as a composite of independent vegetation stands. J.

Geophys. Res., 97, 2697-2715.

Koster, R. and M. Suarez, 1996: Energy and Water Balance Calculations in

the Mosaic LSM. NASA Tech. Memo. 104606, Vol. 9, 60 pp.

Koster, R. D., M. J. Suarez, and M. Heiser, 2000: Variance and predictability

of precipitation at seasonal-to-interannual timescales. J. Hydrometeorol-

ogy, 1, 26-46, 2000.

Lau, K.-M., and W. Bua, 1998: Mechanisms of monsoon-Southern Oscilla-

tion coupling, insights from GCM experiments. Clim. Dyn., 14, 759-

779.

Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert, a parame-

terization of moist convection for general circulation models. Mon. Wea.

Rev., 120, 978-1002.

Oglesby, R.J., and D.J. Erickson III, 1989: Soil moisture and the persistence

of North American drought. J. Clim., 2, 1362-1380.

16



V. D. Pope, M. L. Gallani, P R Rowntree,and R. A. Stratton, 2000: The

impact of new physical parametrizations in the Hadley Centre climate

model - HadAM3. Climate Dyn., 16, 123-146.

Rowell, D. P., C. Folland, K. Maskell, and N. Ward, 1995: Variability of

summer rainfall over tropical north Africa (1906-92): Observations and

Modeling. O. J. R. Meteor. Soc., 121,669-704.

Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration

on the earth's climate. Science, 215, 1498-1501.

Suarez M. J., and L. L. Takacs, 1995: Documentation of the ARIES/GEOS

Dynamical Core: Version 2. NASA Technical Memorandum 104606,

Vol. 5.

Xue, Y., P. J. Sellers, J. L. Kinter and J. Shukla, 1991: A simplified biosphere

model for global climate studies. J. Climate, 4, 345-364.

17



Figure Captions

Fig. 1 Basic design of the experiment, as performed by all participating mod-

els.

Fig. 2 Superposed time series of precipitation for two grid cells: one in which

_'_p is high (top), and one in which _p is low (bottom).

Fig. 3 Global fields of _p(R) -- _"_p(W), as generated by each of the partici-

pating AGCMs.

Fig. 4 Global fields of _E(R) -- mE(W), as generated by each of the partici-

pating AGCMs. The values of this diagnostic over the ocean were not

available for HadAM3.
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Model SSTsUsed Surface Key Referencesfor AGCM Notes
Grid Res.

NSIPP July 1988

COLA

CCMa/
BATS

HadAM3

July 1986

July 1983

July 1981

4 ° (long.)

x 5 ° (lat)

1.8 ° x 2.8 °

2.8 ° × 2.8 °

3.75°x 2.5 °

Dynamics: Suarez and

Takacs [1995]
Land: Koster and

Suarez [1992, 1996]

Convection: Moorthi and

Suarez [1992]

Physics: Kinter et al. [1997]

Dynamics: KiehI et al. [1998]

Land: Xue et al. [1991],

Dirmeyer et al. [1999]

Convection: De Witt

et al. [1996]

GCM: Kiehl et al. [1998]

Land: Dickinson et al. [1993]

GCM-Land comb.: Hahmann

and Dickinson [2001]

General: Pope et al. [2000]

Land: Cox et al. [1999]

Convection: Gregory and

Rowntree [1990]

Initial atmosphere
and land states for

W and R from July 1

1988 conditions in 16

parallel AMIP runs.

Full description of

experiments in

Dirmeyer et al.

[20011 •

W2-W16 began June

15 (first 15 days

thrown out); June 15
land states were

identical; June 15

atmosphere states

from 16 sequential

days.

Initial atmosphere

and land states for

W from a previous

AMIP run: July 1

1979-1994 inclusive.

Prescribed land states

for R from 1981 run,

with land states

initialized to

climatology.

Table 1:

set-up.

Models used in the experiment and details of the experimental
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PART 1: ESTABLISH A TIME SERIES OF SURFACE CONDITIONS (Simulation Wl).

TIME STEP n TIME STEP n+l

1
Step forward the I

coupled AGCM-LSM 1
\

Write the values 1
of the land surface

prognostic variables
into file X.

/! /
Write the values
of the land surface

prognostic variables
into file X.

(Repeat without writing to obtain simulations W2-W16.)

PART 2: RUN 16-MEMBER ENSEMBLE, WITH EACH MEMBER FORCED TO
MAINTAIN THE SAME TIME SERIES OF SURFACE PROGNOSTIC VARIABLES

(Simulations R1-R16).

TIME STEP n

Figure 1:

models.

/t /I
i

Step forward the I

coupled AGCM-LSM I
\

I Discard updated

values of land surface

prognostic variables;
replace with values

for time step n from

i file X

TIME STEP n+l

l
Step forward the I

coupled AGCM-LSM J,, /,
Discard updated I

values of land surface
prognostic variables;
replace with values 1

for time step n+l from

file X

Basic design of the experiment, as performed by all participating

2O
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Figure 3: Global fields of _p(R) - _p(_V), as generated by each of the

participating AGCMs. 22
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Figure 4: Global fields of fiE(R) - _E(W), as generated by each of the

participating AGCMs.



Popular Summary:

"Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric Gen-

eral Circulation Models", by R. Koster, P. Dirmeyer, A. Hahmann, R. Ijpelaar, L.

Tyahla, P. Cox, and M. Suarez

A wet soil that results from a rainstorm may lead to higher evaporation rates

in the weeks to follow, and this higher evaporation may induce additional precipi-

tation, either through local moisture recycling or through changes in the large-scale

atmospheric circulation. Similarly, a drought mw lead to dry soil and thus low

evaporation rates, and the low evaporation may help stifle subsequent precipitation,

thereby prolonging the drought. These are examples of land-atmosphere feedback,

by which atmosphere-induced land surface anomalies in turn affect the atmosphere.

Land-atmosphere feedback is extremely difficult, and often impossible, to quantify in

the real world. Given its importance, though, it haa been examined extensively with

many atmospheric general eircuIation models (AGCMs).

Unfortunately, many of these studies give conflicting results. This leads to some

obvious questions: (1) To what extent is the strength of simulated feedback model

dependent? (2) How can we quanti_" intermodel differences in feedback strength in

an objective way? In this paper, we address these questions with a carefully-devised

AGCM experiment, an experiment with two very important characteristics. First,

it directly quantifies land-atmosphere feedback in the AGCM. This is achieved by

imposing the same land surface states in each member of a 16-member ensemble and

then examining the similarity of the precipitation generated by the different ensemble

members. Second, the experiment is simple enough and computationally inexpensive

enough to be accessible to maw different modeling groups. Indeed, for the present

paper, four groups performed the experiment.

The models do show substantial differences in the simulated strength of land-

atmosphere feedback. Such differences, objectively determined here for the first time,

underline the uncertainty inherent in our understanding of land impacts on climate.

The four-model comparison demonstrates the viability of the intercomparison exper-

iment, which we hope will expand to include a great many more models in the near

future.


